High pressure technology and equipment for the food industry

High pressure technology has been used in the industrial production process of ceramics, metals and composites in the last three decennia. As a result, today, high pressure equipment is available for a broad range of process conditions, i.e. pressures up to 1000MPa, temperatures up to 2200°C, volumes up to several cubic meters and cycling times between a few seconds and several weeks.

Since high pressure technology offers advantages in retaining food quality attributes, it has recently been the subject of considerable interest in the food industry as a non-thermal unit operation. High pressure equipment with pressure levels up to 800 MPa and temperatures in the range of 5 to 90°C (on average) for times up to 30 minutes or longer is currently available to the food industry.

The actual high pressure treatment is a batch process. In practice, high pressure technology subjects liquid or solid foods, with or without packaging, to pressures between 50 and 1000MPa. According to Pascal's principle, high pressure acts instantaneously and uniformly throughout a mass of food and is independent of the size and shape of food products. During compression, a temperature increase or adiabatic heating occurs and its extent is influenced by the rate of pressurisation, the food composition and the (thermo)physical properties of the pressure transfer medium. The temperature in the vessel tends to equilibrate towards the surrounding temperature during the holding period. During pressure release (decompression), a temperature decrease or adiabatic cooling takes place. In high pressure processing, heat cannot be transferred as instantaneously and uniformly as pressure so that temperature distribution in the vessel might become crucial. During the high pressure treatment, other process parameters such as treatment time, pressurisation/decompression rate and the number of pulses have to be considered as critical.

Two types of high pressure equipment can be used in food processing: conventional batch systems and semi-continuous systems. In the conventional batch systems, both liquid and solid pre-packed foods can be processed whereas only pumpable food products such as fruit juice can be treated in semi-continuous systems. Typical equipment for batch high pressure processing consists of a cylindrical steel vessel of high tensile strength, two end closures, a means for restraining the end closures (e.g. a closing yoke to cope with high axial forces, threads, pins), (direct or indirect) compression pumps and necessary pressure controls and instrumentation. Different types of high pressure vessels can be distinguished, i.e. (i) 'monobloc vessel' (a forged constructed in one piece); (ii) 'multi layer vessel' consisting of multiple layers where the inner layers are pre-stressed to reach higher pressure or (iii) 'wire-wound vessel' consisting of pre-stressed vessels formed by winding a rectangular spring steel wire around the vessel. The use of monobloc vessels is limited to working pressures up to 600 MPa and for high pressure application above 600 MPa, pre-stressed vessels are used. The position of high pressure vessels can be vertical, horizontal or tilting depending on the way of processing (Mertens and Deplace, 1993; Zimmerman and Bergman, 1993; Galazka and Ledward, 1995; Mertens, 1995; Knorr, 2001).

Get Juiced

Get Juiced

This book will guide you through the processes of juicing your way to better health. Learn all the savvy tips and tricks to maintain your health and good body for a bright future ahead. This includes tips on diet, exercise, sleeping habits and etc.

Get My Free Ebook

Post a comment