1. Flegal, KM, Carroll, MD, Ogden CL, and Johnson, CL, Prevalence and trends in obesity among US adults, 1999-2000, J. Am. Med. Assoc., 288:1723-1727, 2002.
  2. Bray, GA, Health hazards of obesity, Endocrinol. Metab. Clin. North. Am., 25:907-919, 1996.
  3. MacDonald, IA, Energy expenditure in humans: the influence of activity, diet and sympathetic nervous system, in Clinical Obesity, Kopelman, PG and Stock, MJ, Eds., Blackwell Science, Oxford, U.K., 1998, p. 112-128.
  4. Williams, G, Bing, C, Cai, XJ, Harrold, JA, King, PJ, and Liu, XH, The hypothalamus and the control of energy homeostasis: different circuits, different purposes, Physiol. Behav, 74:683-701, 2001.
  5. Grill, HJ and Smith, GP, Cholecystokinin decreases sucrose intake in chronic decer-ebrate rats, A.J.P., 254:R853-R856, 1988.
  6. Tatemoto, K, Neuropeptide Y: complete amino acid sequence of the brain peptide, Proc. Natl. Acad. Sci. U.S.A., 79:5485-5489, 1982.
  7. Kalra, SP, Dube, MG, Pu, S, Xu, B, Horvath, TL, and Kalra, PS, Interacting appetite-regulating pathways in the hypothalmic regulation of body weight, Endocrine Rev., 20:68-100, 1999.
  8. Wynne, K, Stanley, S, and Bloom, SR, The gut and regulation of body weight, J. Clin. Endocrinol. Metab., 89:2576-2582, 2004.
  9. Batterham, RL, Cowley, MA, Small, CJ, Herzog, H, Cohen, MA, Dakin, CL, Wren, AM, Brynes, AE, Low, MJ, Ghatei, MA, Cone, RD, and Bloom, SR, Gut hormone PYY (3-36) physiologically inhibits food intake, Nature, 418:650-654, 2002.
  10. Goldstone, AP, Unmehopa, UA, Bloom, SR, and Swaab, DF, Hypothalamic NPY and agouti-related protein are increased in human illness but not in Prader-Willi syndrome and other obese subjects, J. Clin. Endocrinol. Metab., 87:927-937, 2002.
  11. Rossi, M, Kim, MS, Morgan, DG, Small, CJ, Edwards, CM, Sunter, D, Abusana, S, Goldstone, AP, Russell, SH, Stanley, SA, Smith, DM, Yagaloff, K, Ghatei, MA, and Bloom, SR, A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of a-melanocyte stimulating hormone in vivo, Endocrinology, 139:4428-4431, 1998.
  12. Small, CJ, Kim, MS, Stanley, SA, Mitchell, JR, Murphy, K, Morgan, DG, Ghatei, MA, and Bloom, SR, Effects of chronic central nervous system administration of Agouti-related protein in pair-fed animals, Diabetes, 50:248-254, 2001.
  13. Nakazato, M, Murakami, N, Date, Y, Kojima, M, Matsuo, H, Kangawa, K, and Matsukura, S, A role for ghrelin in the central regulation of feeding, Nature, 409:194-198, 2001.
  14. De Lecea, L, Kilduff, TS, Peyron, C, Gao, X, Foye, PE, Danielson, PE, et al., The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity, Proc. Natl. Acad. Sci. U.S.A., 95:322-327, 1998.
  15. Sakurai, T, Amemiya, A, Ishil, M, Matsuzaki, I, Chemelli, RM, Tanaka, H, et al., Orexins and orexin receptors: A family of hypothalamic neuropeptides and G proteincoupled receptors that regulate feeding behavior, Cell, 92:573-585, 1998.
  16. Nishino, S, The hypocretin/orexin system in health and disease, Biol. Psychiatr., 54:87-95, 2003.
  17. Willie, JT, Chemelli, RM, Sinton, CM, and Yanagisawa, M, To eat or to sleep? Orexin in the regulation of feeding and wakefulness, Annu. Rev. Neurosci., 24:429-458, 2001.
  18. Chemelli, RM, Willie, JT, Sinton, CM, Elmquist, JK, Scammell, T, Lee, C, et al., Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation, Cell, 98:437-451, 1999.
  19. Lin, L, Faraco, J, Li, R, Kadotani, H, Rogers, W, Lin, X, et al., The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene, Cell, 98:365-376, 1999.
  20. Nishino, S, Ripley, B, Overeem, S, Nevsimalova, S, Lammers, GJ, Vankova, J, et al., Low CSF hypocretin (orexin) and altered energy homeostasis in human narcolepsy, Ann. Neurol., 50:381-388, 2001.
  21. Taheri, S, Zeitzer, JM, and Mignot, E, The role of hypocretins (orexins) in sleep regulation and narcolepsy, Ann. Rev. Neurosci., 25:283-313, 2002.
  22. Neary, NM, Goldstone, AP, and Bloom, SR, Appetite regulation: from gut to the hypothalamus, Clin. Endocrinol. (Oxf), 60:153-160, 2004.
  23. Schwartz, MW, Woods, SC, Porte, D, Seeley, RJ, and Baskin, DG, Central nervous system control of food intake, Nature, 404:661-671, 2000.
  24. Huszar, D, Lynch, CA, Fairchild-Huntress, V, Dunmore, JH, Fang, Q, Beremeier, LR, Gu, W, Kesterson, RA, Boston, BA, Cone, RD, Smith, FJ, Campfield, LA, Burn, P, and Lee, F, Targeted disruption of the melanocortin -4 receptor results in obesity in mice, Cell, 88:131-141, 1997.
  25. Farooqi, IS, Yeo, GS, Keogh, JM, Aminian, S, Jebb, SA, Butler, G, Cheetham, T, and O'Rahilly, S, Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J. Clin. Invest., 106:271-279, 2000.
  26. Farooqi, IS, Yeo, GS, and O'Rahilly, S, Binge eating as a phenotype of melanocortin 4 receptor gene mutations, N. Engl. J. Med., 348:1096-1103, 2003.
  27. Fehm, HL, Smolnik, R, Kern, W, McGregor, GP, Bickel, U, and Born, J, The melanocortin melanocyte-stimulating hormone/adrenocorticotropin (4-10) decreases body fat in humans, J. Clin. Endocrinol. Metab. 86:1144-1148, 2001.
  28. Cowley, MA, Smart, JL, Rubinstein, M, Gerdan, MG, Diano, S, Horvath, TL, Cone, RD, and Low, MJ, Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus, Nature, 411:480-484, 2001.
  29. Rothman, RB, Vu, N, Wang, X, and Xu, H, Endogenous CART peptide regulates mu opioid and serotonin 5-HT(2A) receptors, Peptides, 3:413-417, 2003.
  30. Cota, D, Marsicano, G, Tschop, M, Grubler, Y, Flachskamm, C, Schubert, M, Auer,

D, Yassouridis, A, Thone-Reineke, C, Ortmann, S, Tomassoni, F, Cervino, C, Nisoli,

E, Linthorst, AC, Pasquali, R, Lutz, B, Stalla, GK, and Pagotto, U, The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis, J. Clin. Invest., 112:423-431, 2003.

  1. Blundell, JE, Serotonon and appetite, Neuropharmacology, 23:1537-1551, 1984.
  2. Tecott, LH, Sun, LM, Akana, SF, Strack, AM, Lowenstein, DH, Dallman, MF, and Julius, D, Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors, Nature 374:542-546, 1995.
  3. Randle, PJ, Kerby, AL, and Espinal, J, Mechanisms decreasing glucose oxidation in diabetes and starvation: Role of lipid fuels and hormones, Diabetes. Metab. Rev., 4:623-638, 1988.
  4. Unger, R, Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications, Diabetes, 44:863-870, 1995.
  5. Laaksonen, DE, Lakka, TA, Lakka, HM, Nyyssonen, K, Rissanen, T, Niskanen, LK, and Salonen, JT, Serum fatty acid composition predicts development of impaired fasting glycaemia and diabetes in middle-aged men, Diabet. Med., 19:456-464, 2002.
  6. Hotamisligil, GS, Shargill, NS, and Spiegelman, BM, Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance, Science, 259:87-91, 1993.
  7. Hotamisligil, GS, Budavari, A, Murray, DL, and Spiegelman, BM, Reduced tyrosine activity of the insulin receptor in obesity-diabetes: central role of tumor necrosis factor-a, J. Clin. Invest, 94:1543-1549, 1994.
  8. Kern, PA, Saghizadeh, M, Ong, JM, Bosch, RJ, Deem, R, and Simsolo, RB, The expression of tumor necrosis factor in adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase, J. Clin. Invest., 95:2111-2119, 1995.
  9. Norman, RA, Bogardus, C, and Ravussin, E, Linkage between obesity and a marker near the tumor necrosis factor-a locus in Pima Indians, J. Clin. Invest., 96:158-162, 1995.
  10. Hotamisligil, GS, Peraldi, P, Budavari, A, Ellis, R, White, MF, and Spiegelman, BM, IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha and obesity-induced insulin resistance, Science, 271:665-668, 1996.
  11. Moller, DE, Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes, Trends. Endocrinol. Metab, 11:212-217, 2002.
  12. Grimble, RF, Inflammatory status and insulin resistance, Curr. Opin. Clin. Nutr. Metab. Care, 5:552-559, 2002.
  13. Freeman, DJ, Norrie, J, Caslake, MJ, Gaw, A, Ford, I, Lowe, GD, O'Reilly, DS, Packard, CJ, and Sattar, N, C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study, Diabetes, 51:1596-1600, 2002.
  14. Stefan, N, Vozarova, B, Funahashi, T, Matsuzawa, Y, Weyer, C, Lindsay, RS, Youn-gren, JF, Havel, PJ, Pratley, RE, Bogardus, C, and Tataranni, PA, Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phospho-rylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans, Diabetes, 51:1884-1888, 2002.
  15. Qi, Y, Takahashi, N, Hileman, SM, Patel, HR, Berg, AH, Pajvani, UB, Scherer, PE, and Ahima, RS, Adiponectin acts in the brain to decrease body weight, Nat. Med., 10:524-529, 2004.
  16. Zhang, Y, Proenca, R, Maffei, M, Barone, M, Leopold, L, and Friedman, JM, Positional cloning of the mouse obese gene and its human homologue, Nature, 372:425-432, 1994.
  17. Bado, A, Lavasseur, S, Attoub, S, Kermorgant, S, Laigneau, J-P, Bortoluzzi, M-N, Le Marchand-Brustel, Y, and Lewin, MJM, The stomach as a source of leptin, Nature, 304:790-793, 1998.
  18. Dagogo-Jack, S, Selke, G, Melson, AK, and Newcomer, JW, Robust leptin secretory responses to dexamethasone in obese subjects, J. Clin. Endocrinol. Metab., 82:3230-3233, 1997.
  19. Dagogo-Jack, S, Human leptin regulation and promise in pharmacotherapy, Curr. Drug Targ., 2:181-195, 2001.
  20. Montague, CT, Faroogi, IS, Whitehead, JP, Soos, MA, Rau, H, Wareham, NJ, Sewter, CP, Digby, JE, Mohammed, SN, Hurst, JA, Cheetham, CH, Earley, AR, Barnett, AH, Prins, JB, and O'Rahilly, S, Congenital leptin deficiency is associated with severe early-onset obesity in humans, Nature, 387:903-908, 1997.
  21. Strobel, A, Issad, T, Camoin, L, Ozata, M, and Strosberg, AD, A leptin missense mutation associated with hypogonadism and morbid obesity, Nature, Genet 18:213-215, 1998.
  22. Considine, RV, Considine, EL, Williams, CJ, Nyce, MR, Magosin, SA, Bauer, TL, Rosato, EL, Colberg, J, and Caro, JF, Evidence against either a premature stop codon or the absence of obese gene mRNA in human obesity, J. Clin. Invest., 95:2986-2988, 1995.
  23. Halaas, JL, Gajiwala, KS, Maffei, M, Cohen, SL, Chait, BT, Rabinowitz, D, Lallone, RL, Burley, SK, and Friedman, JM, Weight-reducing effects of the plasma protein encoded by the obese gene, Science, 269:543-546, 1995.
  24. Pelleymounter, MA, Cullen, MJ, Baker, MB, Hecht, R, Winters, D, Boone, T, and Collins, F, Effects of the obese gene product on body weight regulation in ob/ob mice, Science, 269:540-543, 1995.
  25. Farooqi, IS, Jebb, SA, Langmack, G, Lawrence, E, Cheetham, CH, Prentice, AM, Hughes, IA, McCamish, MA, and O'Rahilly, S, Effect of recombinant leptin therapy in a child with congenital leptin deficiency, N. Engl. J. Med, 34:879-884, 1999.
  26. Farooqi, IS, Matarese, G, Lord, GM, Keogh, JM, Lawrence, E, Agwu, C, Sanna, V, Jebb, SA, Perna, F, Fontana, S, Lechler, RI, DePaoli, AM, and O'Rahilly, S, Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin defciency, J. Clin. Invest., 110:1093-1103, 2002.
  27. Licinio, J, Caglayan, S, Ozata, M, Yildiz, BO, de Miranda, PB, O'Kirwan, F, et al., Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypog-onadism, and behavior in leptin-deficient adults, Proc. Natl. Acad. Sci. U.S.A., 101:4531-4536, 2004.
  28. Tartaglia, LA, Dembski, M, Weng, X, Deng, N, Culpepper, J, De Vos, R, Richards, GJ, Campfield, LA, Clark, FT, Deeds, J, Muir, C, Sanker, S, Moriarty, A, Moore, KJ, Smutko, JS, Mays, GG, Woolf, EA, Monroe, CA, and Tepper, RI, Identification and expression cloning of a leptin receptor, OB-R, Cell, 83:1263-1271, 1995.
  29. Akaya, K, Ogawa, Y, Isse, N, Okazaki, T, Satoh, N, Masuzaki, H, Mori, K, Tamura, N, Hosoda, K, and Nakao, K, Molecular cloning of the rat leptin receptor isoform complementary DNAs — identification of a missense mutation in Zucker fatty (fa/fa) rats, Biochem. Biophys. Res. Commun., 225:75-83, 1996.
  30. Lee, GH, Proenca, R, Montez, JM, Carroll, KM, Darvishzadeh, JG, Lee, JI, and Friedman, JM, Abnormal splicing of the leptin receptor in diabetic mice, Nature, 379:632-635, 1997.
  31. Vaisse, C, Halaas, JL, Horvath, CM, Darnell, JE, Jr., Stoffel, M, and Friedman, JM, Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice, Nature Genet., 14:95-97, 1996.
  32. Wang, Y, Kuropatwinski, KK, White, DW, Hawley, TS, Hawley, RG, Tartaglia, LA, and Baumann, H, Leptin receptor action in hepatic cells, J. Biol. Chem., 272:16216-16223, 1997.
  33. Stephens, TW, Basinski, M, Bristow, PK, Bue-Valleskey, JM, Burgett, SG, Craft, L, Hale, J, Hoffmann, J, Hsiung, HM, Kriauciunas, A, MacKellar, W, Rosteck, PR, Jr., Schoner, B, Smith, D, Tinsley, FC, Zhang, X-Y, and Heiman, M, The role of neu-ropeptide Y in the antiobesity action of the obese gene product, Nature, 377:530-532, 1995.
  34. Chen, H, Charlat, O, Tartaglia, LA, Woolf, EA, Weng, X, Ellis, SJ, Lakey, ND, Culpepper, J, Moore, KJ, Breitbart, RE, Duyk, GM, Tepper, RI, and Morgenstern, JP, Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice Cell, 84:491-495, 1996.
  35. Phillips, MS, Liu, Q, Hammond, HA, Dugan, V, Hey, PJ, Caskey, CJ, and Hess, JF, Leptin receptor missense mutation in the fatty Zucker rat, Nat. Genet., 13:18-19, 1966.
  36. Clement, K, Vaisse, C, Lahlou, N, Cabrol, S, Pelloux, V, Cassuto, D, Gourmelen, M, Dina, C, Chambaz, J, Lacorte, J-M, Basdevant, A, Bougneres, P, Lebouc, Y, Froguel, P, and Guy-Grand, B, A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction, Nature, 392:398-401, 1998.
  37. Lonnqvist, F, Aener, P, Nordfors, L, and Schalling, M, Overexpression of the obese (ob) gene in adipose tissue of obese subjects, Nat. Med., 1:950-953, 1995.
  38. Hamilton, BS, Paglia, D, Kwan, AYM, and Deitel, M, Increased obese mRNA expression in omental fat cells from massively obese humans, Nat. Med., 1:953-956, 1995.
  39. Considine, RV, Sinha, MK, Heiman, ML, Kriaciunas, A, Stephens, TW, Nyce, MR, Ohannesian, JP, Marco, CC, McKee, LJ, Bauer, TL, and Caro, JF, Serum immunore-active-leptin concentrations in normal-weight and obese humans, N. Engl. J. Med., 334:292-295, 1996.
  40. Schwartz, MW, Peskind, E, Boyko, EJ, and Porte, D, Jr., Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat. Med., 2:589-593,


  1. Blorbaek, C, El-Haschimi, K, Fratz, JD, and Flier, JS, The role of SOCS-3 in leptin signaling and leptin resistance, J. Biol. Chem, 274(42):30059-30065, 1999.
  2. Kamohara, S, Burcelin, R, Halaas, JL, Friedman, JM, and Charron, MJ, Acute stimulation of glucose metabolism in mice by leptin treatment, Nature, 389:374-377,


  1. Barzilai, N and Gupta, G, Interaction between aging and syndrome X: new insights on the pathophysiology of fat distribution, Ann. N.Y. Acad. Sci., 892:58-72, 1999.
  2. Cohen, B, Novick, D, and Rubinstein, M, Modulation of insulin activities by leptin, Science, 274:1185-1188, 1996.
  3. Shimabukuro, M, Koyama, K, Chen, G, Wang, MY, Trieu, F, Lee, Y, Newgard, CB, and Unger, RH, Direct antidiabetic effect of leptin through triglyceride depletion of tissues, Proc. Natl. Acad. Sci. U.S.A., 94:4637-4641, 1997.
  4. Tykodi, G, Askari, H, and Dagogo-Jack, S, Fasting plasma leptin levels predict insulin sensitivity in obese and non-obese humans, Program and Abstracts, 86th Annual Meeting, Endocrine Society, New Orleans, Abstract P2-336, June 2004.
  5. Sinha, MK, Ohannesian, JP, Heiman, ML, Kriauciunas, A, Stephens, TW, Magosin, S, Marco, C, and Caro, JF, Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects, J. Clin. Invest., 97:1344-1347, 1996.
  6. Liu, J, Askari, H, and Dagogo-Jack S, Basal and stimulated plasma leptin in diabetic subjects, Obes. Res., 7:537-544, 1999.
  7. Dagogo-Jack, S, Liu, J, Askari, H, Tykodi, G, and Umamaheswaran, I, Impaired leptin response to glucocorticoid as a chronic complication of diabetes, J. Diabet. Compl., 14:1-6, 2000.
  8. Askari, H, Tykodi, G, and Dagogo-Jack, S, Dynamic leptin responses to glucocorticoid and insulin in lean and obese subjects, Diabetes, 53(Suppl. 2) (Abstr.), A412, 2004.
  9. Askari, H, Liu, J, and Dagogo-Jack, S, Hormonal regulation of human leptin in vivo: effects of hydrocortisone and insulin, Inter. J. Obesity., 24:1254-1259, 2000.
  10. Laferrere, B, Fried, SK, Hough, K, Campbell, SA, Thornton, J, and Pi-Sunyer, FX, Synergistic effects of feeding and dexamethasone on serum leptin levels, J. Clin. Endocrinol. Metab., 83:3742-3745, 1998.

Umamaheswaran, I, Askari, H, Tykodi, G, and Dagogo-Jack, S, Plasma leptin responsiveness to glucocorticoid occurs at physiological doses, and is abolished by fasting, Obes. Res., 11:232-237, 2003.

Oral, EA, Simha, V, Ruiz, E, Andewelt, A, Premkumar, A, Snell, P, Wagner, AJ, DePaoli, AM, Reitman, ML, Taylor, SI, Gorden, P, and Garg, A, Leptin-replacement therapy for lipodystrophy, N. Engl. J. Med.., 346:570-578, 2002. Haynes, WG, Morgan, DA, Walsh, SA, Mark, AL, Sivitz, WI, Receptor-mediated regional sympatheric nerve activation by leptin, J. Clin. Invest., 100:270-278, 1997. Heymsfield, SB, Greenberg, AS, Fujioka, K, Dixon, RM, Kushner, R, Hunt, T, Lubina, JA, Patane, J, Self, B, Hunt, P, and McCamish, M, Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose escalation trial, JAMA, 282(16):1568-1575, 1999.

Kennedy, GC, The role of depot fat in the hypothalmic control of food intake in the rat. Proceedings of the Royal Society of London, B 140:579-592, 1953. Baura, GD, Foster, DM, Porte, D, Jr., Kahn, SE, Bergman, RN, Cobelli, C, and Schwartz, MW, Saturable transport of insulin from plasma into the central nervous system of dog in vivo. A mechanism for regulated insulin delivery to the brain, J. Clin. Invest, 92:1824-1830, 1993.

McLaughlin, CL, Role of peptides from gastrointestinal cells in food intake regulation, J. Anim. Sci., 55(6):1515-1527, 1982.

Brunicardi, FC, Chaiken, RL, Ryan, AS, Seymour, NE, Hoffmann, JA, Lebovitz, HE, Chance, RE, Gingerich, RL, Andersen, DK, and Elahi, D, Pancreatic polypeptide administration improves abnormal glucose metabolism in patients with chronic pancreatitis, J. Clin. Endocrinol. Metab., 81(10):3566-3572, 1996. Larhammer, D, Structural diversity of receptors for neuropeptide Y, peptide YY and pancreatic polypeptide,. Regul. Pept., 65:165-174, 1996.

Kojima, M, Hosoda, H, Date, Y, Nakazato, M, Matsuo, H, and Kangawa, K, Ghrelin is a growth-hormone-releasing acylated peptide from stomach, Nature, 402:656-660, 1999.

Wren, AM, Small, CJ, Ward, HL, Murphy, KG, Dakin, CL, Taheri, S, Kennedy, AR, Roberts, GH, Morgan, DG, Ghatei, MA, and Bloom, SR, The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion, Endocrinology, 141:4325-4328, 2000.

Wren, AM, Seal, LJ, Cohen, MA, Byrnes, AE, Frost, GS, Murphy, KG, Dhillo, WS, Ghatei, MA, and Bloom, SR, Ghrelin enhances appetite and increases food intake in humans, J. Clin. Endocrinol. Metab., 86:5992, 2001.

Cummings, DE, Purnell, JQ, Frayo, RS, Schmidova, K, Wisse, BE, and Weigle, DS, A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans, Diabetes, 50:1714-1719, 2001.

Tschop, M, Weyer, C, Tataranni, PA, Devanarayan, V, Ravussin, E, and Heiman, ML, Circulating ghrelin levels are decreased in human obesity, Diabetes, 50:707-709, 2001.

Nakazato, M, Murakami, N, Date, Y, Kojima, M, Matsuo, H, Kangawa, K, and Matsukura, S, A role for ghrelin in the central regulation of feeding, Nature, 409:194-198, 2001.

Date, Y, Murakami, N, Toshinai, K, Matsukura, S, Nijima, A, Matsuo, H, Kangawa, K, and Nakazato, M, The role of the gastrin afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats, Gastroenterology, 123:1120-1128, 2002.

  1. Batterham, RL, Cowley, MA, Small, CJ, Herzog, H, Cohen, MA, Dakin, CL, Wren, AM, Brynes, AE, Low, MJ, Ghatei, MA, Cone, RD, and Bloom, SR, Gut hormone PYY(3-36) physiologically inhibits food intake, Nature, 418:650-654, 2002.
  2. Batterham, RL, Cohen, MA, Ellis, SM, Le Roux, CW, Withers, DJ, Frost, GS, Ghatei, MA, and Bloom, SR, Inhibition of food intake in obese subjects by peptide YY3-36, N. Engl. J. Med., 349:941-948, 2003.
  3. Turton, MD, O'Shea, D, Gunn, I, Beak, SA, Edwards, CM, Meernan, K, Choi, SJ, Taylor, GM, Heath, MM, Lambert, PD, Wilding, JP, Smith, DM, Ghatei, MA, Herbert, J, and Bloom, SR, A role for glucagon-like peptide-1 in the central regulation of feeding, Nature, 379:69-72, 1996.
  4. Kreymann, B, Williams, G, Ghatei, MA, and Bloom, SR, Glucagon-like peptide-1,7-36: a physiological incretin in man, Lancet, 2:1300-1304, 1987.
  5. Verdich, C, Flint, A, Gutzwiller, JP, Naslund, E, Beglinger, C, Hellstrom, PM, Long, SJ, Morgan, LM, Holst, JJ, and Astrup, A, A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans, J. Clin. Endocrinol. Metab., 86:4382-4389, 2001.
  6. Todd, JF, Wilding, JP, Edwards, CM, Khan, FA, Ghatei, MA, and Bloom, SR, Glucagon-like peptide-1 (GLP-1): a trial of treatment in non-insulin-dependent diabetes mellitus, Eur. J. Clin. Invest., 27:533-536, 1997.
  7. Egan, JM, Cocquet, AR, and Elahi, D, The insulinotropic effect of acute exendin-4 administered to humans: comparison of nondiabetic state to type 2 diabetes, J. Clin. Endocrinol. Metab., 87:1282-1290, 2002.
  8. Ahren B, Simonsson, E, Larsson, H, Landin-Olsson, M, Torgeirsson, H, Jansson, PA, Sandqvist, M, Bavenholm, P, Efendic, S, Eriksson, JW, Dickinson, S, and Holmes, D, Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in type 2 diabetes, Diabet. Care, 25:869-875, 2002.
  9. Gibbs, J, Young, RC, and Smith, GP, Cholecystokinin decreases food intake in rats, J. Comput. Physiol. Psychol., 84:488-495, 1973.
  10. Moran, TH, Cholecytoskinin and satiety: current perspectives. Nutrition , 16:858-865, 2000.
  11. Matson, CA, Wiater, MF, Kuijper, JL, and Weigle, DS, Synergy between leptin and cholecystokinin (CCK) to control daily caloric intake, Peptides, 18:1275-1278, 1997.
  12. West, DB, Greenwood, MR, Marshall, KA, and Woods, SC, Lithium chloride, chole-cystokinin and meal patterns: evidence that cholecystokinin suppresses meal size in rats without causing malaise, Appetite, 8:221-227, 1987.
  13. Crawley, JN and Beinfeld, MC, Rapid development of tolerance to the behavioural actions of cholecystokinin, Nature, 302:703-706, 1983.
Diabetes 2

Diabetes 2

Diabetes is a disease that affects the way your body uses food. Normally, your body converts sugars, starches and other foods into a form of sugar called glucose. Your body uses glucose for fuel. The cells receive the glucose through the bloodstream. They then use insulin a hormone made by the pancreas to absorb the glucose, convert it into energy, and either use it or store it for later use. Learn more...

Get My Free Ebook

Post a comment