References

Eat Stop Eat

Best Weight Loss Programs That Work

Get Instant Access

Allison, M.J. (1965) Phenylalanine biosynthesis from phenylacetic acid by anaerobic bacteria from the rumen. Biochemical and Biophysical Research Communications 18, 30-35.

Allison, M.J. (1969) Biosynthesis of amino acids by ruminal microorganisms. Journal of Animal Science 29, 797-807.

Allison, M.J. and Robinson, I.M. (1970) Biosynthesis of a-ketoglutarate by the reductive carboxylation of succinate in Bacteroides ruminicola. Journal of Bacteriology 104, 50-56.

Allison, M.J., Bryant, M.P. and Doetsch, R.N. (1958) Volatile fatty acid growth factor for cellulolytic cocci of bovine rumen. Science 128, 474-475.

Allison, M.J., Bryant, M.P. and Doetsch, R.N. (1962) Studies on the metabolic function of branched-chain volatile fatty acids, growth factors for Ruminococci. Incorporation of isovalerate into leucine. Journal of Bacteriology 83, 523-532.

Allison, M.J., Robinson, I.M. and Baetz, A.L. (1979) Synthesis of a-ketoglutarate by reductive carboxylation of succinate in VeiIlonella, Selenomonas and Bacteroides. Journal of Bacteriology 140, 980-986.

Allison, M.J., Baetz, A.L. and Wiegel, J. (1984) Alternative pathways for biosynthesis of leucine and other amino acids in Bacteroides ruminicola and Bacteroides fragilis. Applied and Environmental Microbiology 48, 1111-1117.

Allison, M.J., Hammond, A.C. and Jones, R.J. (1990) Detection of ruminal bacteria that degrade toxic dihy-droxypridine compounds produced from mimosine. Applied and Environmental Microbiology 56, 590-594

Allison, M.J., Mayberry, W.R., McSweeney, C.S. and Stahl, D.A. (1992) Synergistes pnesii, gen. new., sp. nov.: a rumen bacterium that degrades toxic pyridinediols. Systematic and Applied Microbiology 15, 522-529.

Al-Rabbat, M.F., Baldwin, R.L. and Weir, W.C. (1971) In vitro nitrogen tracer technique for some kinetic measurements of ruminal ammonia. Journal of Dairy Science 54, 1150-1161.

Argyle, J.L. and Baldwin, R.L. (1989) Effect of amino acids and peptides on rumen microbial growth yields. Journal of Dairy Science 72, 2017-2027.

Armstead, I.P. and Ling, J.R. (1993) Variations in the uptake and metabolism of peptides and amino acids by mixed ruminal bacteria in vitro. Applied and Environmental Microbiology 59, 3360-3366.

Atasoglu, C., Valdês, C., Walker, N.D., Newbold, C.J. and Wallace, R.J. (1998) De novo synthesis of amino acids by the ruminal bacteria Pre vote! la bryantii B:4, Selenomonas ruminantium HD4 and Streptococcus bovis ESI. Applied and Environmental Microbiology 64, 2836-2843.

Atasoglu, C., Valdês, C., Newbold, C.J. and Wallace, R.J. (1999) Influence of peptides and amino acids on fermentation rate and de novo synthesis of amino acids by mixed rumen micro-organisms from the sheep rumen. British Journal of Nutrition 81, 307-314.

Atasoglu, C., Newbold, C.J. and Wallace, R.J. (2001) Incorporation of [15N]ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3 and Ruminococcus flave-faciens 17. Applied and Environmental Microbiology 67, 2819-2822.

Atasoglu, C., Guliye, A.Y. and Wallace, R.J. (2002) Use of a deletion approach to assess the amino acid requirements for optimum fermentation by mixed microorganisms from the sheep rumen. Animal Science, in press.

Attwood, G.T., Klieve, A.V., Ouwerkerk, D. and Patel, B.K.C. (1998) Ammonia-hyperproducing bacteria from New Zealand ruminants. Applied Environmental Microbiology 64, 1796-1804.

Barcroft, J., McAnally, R.A. and Phillipson, A.T. (1944) Absorption of volatile fatty acids from the alimentary tract of the sheep and other animals. Journal of Experimental Biology 20, 120-129.

Barker, H.A. (1981) Amino acid degradation by anaerobic bacteria. Annual Review of Biochemistry 50, 23-40.

Ben-Ghedalia, D., McMeniman, N.P. and Armstrong, D.G. (1978) The effect of partially replacing urea nitrogen with protein-N on N capture in the rumen of sheep fed a purified diet. British Journal of Nutrition 39, 37-44.

Bergen, W.G., Purser, D.B. and Cline, J.H. (1967) Enzymatic determination of the protein quality of individual rumen bacteria. Journal of Nutrition 92, 357-364.

Bertrand, J.A., Pardue, F.E. and Jenkins, T.C. (1998) Effect of ruminally protected amino acids on milk yield and composition of Jersey cows fed whole cottonseed. Journal of Dairy Science 81, 2215-2220.

Bladen, H.A., Bryant, M.D. and Doetsch, R.N. (1961) A study of bacterial species from the rumen which produce ammonia from protein hydrolyzate. Applied Microbiology 9, 175-180.

Blake, J.S., Salter, D.N. and Smith, R.H. (1983) Incorporation of nitrogen into rumen bacterial fractions of steers given protein- and urea-containing diets. Ammonia assimilation into intracellular bacterial amino acids. British Journal of Nutrition 50, 769-782.

Broderick, G.A. and Balthrop, J.E. (1979) Chemical inhibition of amino acid deamination by ruminal microbes in vitro. Journal of Animal Science 49, 1101-1111.

Broderick, G.A. and Wallace, R.J. (1988) Effects of dietary nitrogen source on concentrations of ammonia, free amino acids and fluoresamine-reactive peptides in the sheep rumen. Journal of Animal Science 66. 2233-2238.

Broderick, G.A., Wallace, R.J. and McKain, N. (1988) Uptake of small neutral peptides by mixed rumen microorganisms in vitro. Journal of the Science of Food and Agriculture 42, 109-118.

Brown, C.M. (1980) Ammonia assimilation and utilization in bacteria and fungi. In: Payne, J.W. (ed.) Microorganisms and Nitrogen Sources. John Wiley & Sons, Chichester, UK, pp. SI 1 535.

Bryant, M.P. (1973) Nutritional requirements of the predominant rumen cellulolytic bacteria. Federation Proceedings 32, 1809-1813.

Bryant, M.P. and Robinson, I.M. (1961) Studies of the nitrogen requirements of some ruminal cellulolytic bacteria. Applied Microbiology 9, 96-103.

Bryant, M.P. and Robinson, I.M. (1962) Some nutritional characteristics of predominant culturable ruminal bacteria. Journal of Bacteriology 84, 605-614.

Bryant, M.P. and Robinson, I.M. (1963) Apparent incorporation of ammonia and amino acid carbon during growth of selected species of ruminal bacteria. Journal of Dairy Science 46, 150-154.

Bryant, P.M., Robinson, I.M. and Chu, H. (1959) Observations on the nutrition of Bacteroides succino-genes - a ruminal cellulolytic bacterium. Journal of Dairy Science 42, 1831-1847.

Caldwell, D.R. and Bryant, M.P. (1966) Medium without rumen fluid for non-selective enumeration and isolation of rumen bacteria. Applied Microbiology 14, 794-801.

Carro, M.D. and Miller, E.L. (1999) Effect of supplementing a fibre basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semi-continuous culture system (RUSITEC). British Journal of Nutrition 82, 149-157.

Chalmers, M.I. and Synge, R.L.M. (1954) The digestion of nitrogenous compounds in ruminants. Advances in Protein Chemistry 9, 93-120.

Chalupa,W. (1975) Rumen bypass and protection of proteins and amino acids. Journal of Dairy Science 58,1198-1218.

Chalupa, W. (1976) Degradation of amino acids by the mixed rumen microbial population. Journal of Animal Science 43, 828-834.

Chalupa, W., Clark, J., Opliger, P. and Lavker, R. (1970) Ammonia metabolism in rumen bacteria and mucosa from sheep fed soya protein or urea. Journal of Nutrition 100, 161-169.

Chalupa, W., Patterson, J.A., Parish, R.C. and Chow, A.W. (1983) Effects of diaryliodonium compounds on nitrogen metabolism in growing steers. Journal of Animal Science 57, 195-200.

Chen, G. and Russell, J.B. (1988) Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus. Applied and Environmental Microbiology 54, 2742-2749.

Chen, G. and Russell, J.B. (1989a) Sodium-dependent transport of branched chain amino acids by a monensin-sensitive ruminal Peptostreptococcus. Applied and Environmental Microbiology 55, 2658-2663.

Chen, G. and Russell, J.B. (1989b) More monensin-sensitive, ammonia producing bacteria from the rumen. Applied and Environmental Microbiology 55, 1052-1057.

Chen, G. and Russell, J.B. (1990) Transport and deamination of amino acids by a gram positive, monensin-sensitive ruminal bacterium. Applied and Environmental Microbiology 56, 2186-2192.

Chen, G., Russell, J.B. and Sniffen, C.J. (1987a) A procedure of measuring peptides in the rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminal protein degradation. Journal of Dairy Science 70, 1211-1219.

Chen, G., Sniffen, C.J. and Russell, J.B. (1987b) Concentration and estimated flow of peptides from the rumen of dairy cattle: effects of protein quality, protein solubility, and feeding frequency. Journal of Dairy Science 70, 983-992.

Cheng, K.-J. and Wallace, R.J. (1979) The mechanism of passage of endogenous urea through the rumen wall and the role of ureolytic epithelial bacteria in the urea flux. British Journal of Nutrition 42, 553-557.

Chikunya, S., Newbold, C.J., Rode, L., Chen, X.B. and Wallace, R.J. (1996) Influence of dietary rumen-degradable protein on bacterial growth in the rumen of sheep receiving different energy sources. Animal Feed Science and Technology 63, 333-340.

Cooper, P.B. and Ling, J.R. (1985) The uptake of peptides and amino acids by rumen bacteria. Proceedings of the Nutrition Society 44, 144A.

Cotta, M.A. and Russell, J.B. (1997) Digestion of nitrogen in the rumen. In: Mackie, R.I. and White, B.A. (eds) Gastrointestinal Microbiology. Chapman and Hall, New York, pp. 424-469.

Cruz Soto, R., Muhammed, S.A., Newbold, C.J., Stewart, C.S. and Wallace, R.J. (1994) Influence of peptides, amino acids and urea on microbial activity in the rumen of sheep receiving grass hay on the growth of rumen bacteria in vitro. Animal Feed Science and Technology 49, 151-161.

Czerkawski, J.W. (1976) Chemical composition of microbial matter in the rumen. Journal of the Science of Food and Agriculture 27, 621-632.

Czerkawski, J.W. and Breckenridge, G. (1982) Distribution and changes in urease (EC 3.5.1.5) activity in the rumen simulation technique (Rusitec). British Journal of Nutrition 47, 331-348.

Depardon, N., Debroas, D. and Blanchart, G. (1995) Breakdown of peptides from a soya protein hydrolysate by rumen bacteria. Simultaneous study of enzyme activities and of two physico-chemical parameters: moleculer weight and hydrophobicity. Journal of the Science of Food and Agriculture 68, 25-31.

Dixon, R.M. and Chanchai, S. (2000) Colonization of source of N substrates used by microorganisms digesting forages incubated in synthetic fibre bags in the rumen. Animal Feed Science and Technology 83, 261-272.

Engles, F.M. and Brice, R.E. (1985) A barrier covering lignified cell walls of barley straw that resists access by rumen microorganisms. Current Microbiology 12, 217-224.

Erfle, J.D., Sauer, F.D. and Mahadevan, S. (1977) Effect of ammonia concentration on activity of enzymes of ammonia assimilation and on synthesis of amino acids by mixed bacteria in continuous culture. Journal of Dairy Science 60, 1064-1072.

Eschenlauer, S.C.P., McEwan, N.R., Nelson, N„ Calza, R.E., Wallace, R.J. and Newbold, C.J. (1999) An NAD-dependent glutamate dehydrogenase cloned from the rumen ciliate protozoan, Entodinium cau-datum. Proceedings of IK International Symposium on Ruminant Physiology, Pretoria, South Africa, p. 58.

Eschenlauer, S.C.P., McKain, N., Walker, N.D., McEwan, N.R., Newbold, C.J. and Wallace, R.J. (2002) Ammonia production by ruminal microorganisms, and enumeration, isolation and characterization of bacteria capable of growth in peptides and amino acids from the sheep rumen. Applied Environmental Microbiology 68, 4925-4931.

Falconer, M.L. and Wallace, R.J. (1998) Variation in proteinase activities in the rumen. Journal of Applied Microbiology 84, 377-382.

Floret, F„ Chaudhary, L.C., Ellis, W.C., El Hassan, S„ McKain, N„ Newbold, C.J. and Wallace, R.J. (1999) Influence of l-[(E)-2-(2-methyl-4-nitrophenyl)diaz-l-enyl]pyrrolidine-2-carboxylic acid and diphenyliodonium chloride on ruminal protein metabolism and ruminal microorganisms. Applied and Environmental Microbiology 65, 3258-3260.

Gibbons, R.J. and McCarthy, R.D. (1957) Obligately anaerobic urea-hydrolyzing bacteria in the bovine rumen. University of Maryland Agricultural Experimental Station Miscellaneous Publications 291,12-16.

  1. K.E., Hoover, W.H., Miller, T.K. and Thayne, W.V. (1996) Effect of form of nitrogen on growth of ruminal microbes in continuous culture. Journal of Animal Science 74, 483-491.
  2. D. and Delafond, H.M.O. (1843) Recherches sur des animalcules se developant en grand nombre dans l'estomac et dans les intestins pendant la digestion des animaux herbivores et carnivores. Comptes Rendus Hebdomadaire des Seances de VAcademie des Sciences, Paris 17, 1304-1308.

Hammond, A.C. (1995) Leucaena toxicosis and its control in ruminants. Journal of Dairy Science 73, 1487-1492.

Hammond, A.C., Carlson, J.R. and Breeze, R.G. (1978) Monensin and the prevention of tryptophan-induced acute bovine pulmonary edema and emphysema. Science 201, 153-155.

Harmeyer, J. (1965) Fixation of carbon dioxide in amino acids by isolated rumen protozoa (Isotricha prostoma and I. intestinalis). Zentralblatt für Veterinaermedizin 12, 10-17.

Hazlewood, G.P., Orpin, C.G., Greenwood, Y. and Black, M.E. (1983) Isolation of proteolytic rumen bacteria by use of selective medium containing leaf fraction I protein (ribulose bis phosphate carboxylase). Applied and Environmental Microbiology 45, 1780-1784.

Hegariy, M.P., Court, R.D., Christie, G.S. and Lee, C.P. (1976) Mimosine in Leucaena leucocephala is metabolised to a goitrogen in ruminants. Australian Veterinary Journal 52, 490.

Henderickx, H.K. (1976) Quantitative aspects of the use of non-protein nitrogen in ruminant feeding. Cuban Journal of Agricultural Science 10, 1-18.

Higgins, C.F. and Gibson, M.M. (1986) Peptide transport in bacteria. Methods in Enzymology 125, pp. 365-377.

Hino, T. and Russell, J.B. (1985) Effect of reducing-equvalent disposal and NADH/NAD on deamination of amino acids by intact rumen microorganisms and their cell extracts. Applied and Environmental Microbiology 50, 1368-1374.

Hristov, A.N. and Broderick, G.A. (1994) In vitro determination of ruminal protein degradability using [15N]ammonia to correct for microbial nitrogen uptake. Journal of Dairy Science 72, 1344-1354.

Hsu, J.T., Fahey, G.C., Jr, Berger, L.L., Mackie, R.I. and Merchen, N.R. (1991) Manipulation of nitrogen digestion by sheep using defaunation and various nitrogen supplementation regimens. Journal of Animal Science 69, 1290-1299.

Hungate, R.E. (1947) Studies on cellulose fermentation. Ill The culture and isolation of cellulose-decomposing bacteria from the rumen of cattle. Journal of Bacteriology 53, 631-645.

Hvelplund, T., Misciattelli, L. and Weisbjerg, M.R. (2001) Supply of the dairy cow with amino acids from dietary protein. Journal of Animal and Feed Sciences 10 (Suppl. 1), 69-85.

Ivan, M., Neill, L. and Entz, T. (2000) Ruminal fermentation and duodenal flow following progressive inoculations of fauna-free wethers with major individual species of ciliate protozoa or total fauna. Journal of Animal Science 78, 750-759.

Jones, G.A., MacLeod, R.A. and Blackwood, A.C. (1964) Ureolytic rumen bacteria: characteristics of the microflora from a urea-fed sheep. Canadian Journal of Microbiology 10, 371-378.

Jones, R.J. and Megarrity, R.G. (1986) Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminals to overcome the toxicity of Leucaena. Australian Veterinary Journal 63, 259-262.

Kennedy, P.M. and Milligan, L.P. (1980) The degradation and utilization of endogenous urea in the gastrointestinal tract of ruminants: a review. Canadian Journal of Animal Science 60, 205-221.

Khan, R.I., Onodera, R., Amin, M.R. and Mohamed, N. (1999) Production of tyrosine and other aromatic compounds from phenylalanine by rumen microorganisms. Amino Acids 17, 335-346.

Kirk, J.M., Woodward, C.L., Ellis, W.C. and Ricke, S.C. (2000) Glutamine synthetase and protease enzyme activities and growth response of ruminal bacterium Prevotella ruminicola strain B:4 to nitrogen source and concentration. Journal of Environmental Science and Health 1, 103-120.

Komisarczuk, S., Durand, M., Beaumatin. Ph. and Hannequart, G. (1987) Utilisation de I'azote 15 pour la mesure la proteosynthese microbienne dans les phases solide et liqide d'un fermenteur semi-continu (Rusitec) (The use of nitrogen-15 for determination of microbial synthesis in the solid and liquid phase of a semi-continuous fermenter (Rusitec)). Reproduction, Nutrition, Development 27, 261-262.

Krause, D.O. and Russell, J.B. (1996) An rRNA approach for assessing the role of obligate amino acid fermenting bacteria in ruminal amino acid deamination. Applied and Environmental Microbiology 62, 815-821.

Leibholz, J. (1969) Effect of diet on the concentration of free amino acids, ammonia and urea in the rumen and blood plasma of the sheep. Journal of Animal Science 29, 628-633.

Lenartova, V., Holovska, K., Havassy, I., Javorsky, P. and Rybosova, E. (1985) Ammonia-utilising enzymes of adherent bacteria in the sheep's rumen. Physiologia Bohemoslov 34, 512-517.

Ling, J.R. and Armstead, I.P. (1995) The in vitro uptake and metabolism of peptides and amino acids by five species of rumen bacteria. Journal of Applied Bacteriology 78, 116-124.

Lobley, G.E. (1994) Amino acid and protein metabolism in the whole body and individual tissues of ruminants. In: Aspuland, J.M. (ed.) Principles of Protein Nutrition of Ruminants. CRC Press, London, pp. 147-178.

Lowe, S.E., Theodorou. M.K., Trinci, A.P.J, and Hespell, R.B. (1985) Growth of anaerobic rumen fungi on defined and semi-defined media lacking rumen fluid. Journal of General Microbiology 131, 2225-2229.

Maeng, W.J., Van Nevel, C.J., Baldwin, R.L. and Morris, J.G. (1976) Rumen microbial growth rates and yields: effects of amino acids and proteins. Journal of Dairy Science 59, 68-79.

Mahadevan, S., Sauer, F. and Erfle, J.D. (1976) Studies on bovine rumen bacterial urease. Journal of Animal Science 42, 745-753.

Mahadevan. S., Erfle, J.D. and Sauer, F.D. (1980) Degradation of soluble and insoluble proteins by Bacteroides amylophilus protein and by rumen microorganisms. Journal of Animal Science 50, 723-728.

Makkar, H.P.S., Sharma, O.P., Dawra, R.K. and Negi, S.S. (1981) Effect of acetohydroxamic acid on rumen urease activity in vitro. Journal of Dairy Science 64, 643-648.

Mangan, J.L. (1972). Quantitative studies on nitrogen metabolism in the bovine rumen. The rate of proteolysis of casein and ovalbumin and the release and metabolism of free amino acids. British Journal of Nutrition 27. 261-283.

Masson, H.A. and Ling, J.R. (1986) The in vitro metabolism of free and bacterially bound 2,2'-diaminopimelic acid by rumen microorganisms. Journal of Applied Bacteriology 60, 341-349.

Matheron, C., Delort, A.M., Gaudet, G., Liptaj, T. and Forano, E. (1999) Interactions between carbon and nitrogen metabolism in Fibrobacter succinogenes S85: a H-l and C-13 nuclear magnetic resonance and enzymatic study. Applied and Environmental Microbiology 65, 1941-1948.

Mcintosh, F.M., Newbold, C.J., Losa, R., Williams, P. and Wallace, R.J. (2000) Effects of essential oils on rumen fermentation. Reproduction, Nutrition, Development 40, 221-222.

McKain, N., Wallace, R.J. and Watt, N.D. (1992) Selective isolation of bacteria with dipeptidyl aminopepti-dase type I activity from the sheep rumen. FEMS Microbiology Letters 95, 169-174.

McSweeney, C.S., Palmer, B., Bunch, R. and Krause, D.O. (1999) Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus. Applied and Environmental Microbiology 65, 3075-3083.

Merchen, N.R. and Titgemeyer, E.G. (1992) Manipulation of amino acid supply to the growing ruminant. Journal of Animal Science 70, 3238-3247.

Merry, R.J., McAllan, A.B. and Smith, R.H. (1990) In vitro continuous culture studies on the effect of nitrogen source on microbial growth and fibre digestion. Animal Feed Science and Technology 31, 55-64.

Milligan, L.P. (1970) Carbon dioxide fixing pathways of glutamic acid synthesis in the rumen. Canadian Journal of Biochemistry 48, 463-468.

Morrison, M. and Mackie, R.I. (1997) Biosynthesis of nitrogen-containing compounds. In: Mackie, R.I. and White, B.A. (eds) Gastrointestinal Microbiology. Chapman and Hall, New York, pp. 424-469.

Morrison, M., Mackie, R.I. and Smith, R.H. (1990) 3-Phenylpropanoic acid improves the affinity of Ruminococcus albus for cellulose in continuous culture. Applied and Environmental Microbiology 56.3220-3222.

Newbold, C.J., Wallace, R.J. and McKain, N. (1990) Effect of the ionophore tetronasin, on nitrogen metabolism of rumen microorganisms in vitro. Journal of Animal Science 68, 1103-1109.

Newbold, C.J., Wallace, R.J. and Watt, N.D. (1992) Properties of ionophore-resistant Bacteroides ruminicola enriched by cultivation in the presence of tetronasin. Journal of Applied Bacteriology 72, 65-70.

Nolan, J. V. (1975) Quantitative models of nitrogen metabolism in sheep. In: McDonald, I.W. and Warner, A.C.I. (eds) Digestion and Metabolism in the Ruminant. University of New England, Armidale, pp. 416-431.

Nolan, J.V. (1993) Nitrogen kinetics. In: Forbes, J.M. and France, J. (eds) Quantitative Aspects of Ruminant Digestion and Metabolism. CAB International, Wallingford, UK, pp. 123-143.

Nugent, J.H.A. and Mangan, J.L. (1981) Characteristics of the rumen proteolysis of fraction I (18S) leaf protein from lucerne (Medicago sativa L). British Journal of Nutrition 46, 39-58.

Nugent, J.H.A., Jones, W.T., Jordan, D.J. and Mangan, J.L. (1983) Rates of proteolysis in the rumen of the soluble proteins casein, fraction I (18S) leaf protein, bovine serum albumin and bovine submaxillary mucoprotein. British Journal of Nutrition 50, 357-368.

Okuuchi, K., Nagasawa, T., Tomita, Y. and Onodera, R. (1993) In vitro metabolism of tryptophan by rumen microorganisms: the interrelationship between mixed rumen protozoa and bacteria. Animal Science Technology (Japan) 64, 1079-1086.

Onodera, R. (1986) Contribution of protozoa to lysine synthesis in the in vitro rumen microbial ecosystem. Applied and Environmental Microbiology 51, 1350-1351.

Onodera, R. and Kandatsu, M. (1973) Synthesis of lysine from a,£-diaminopimelic acid by mixed ciliated rumen protozoa. Nature New Biology 244, 31-32.

Onodera, R. and Kandatsu, M. (1974) Formation of lysine from ax-diaminopimelic acid and negligible synthesis of lysine from some other precursors by rumen ciliate protozoa. Agricultural and Biological Chemistry 38, 913-920.

Onodera, R., Shinjo, T. and Kandatsu, M. (1974) Formation of lysine from ax-diaminopimelic contained in rumen bacterial cell walls by rumen ciliate protozoa. Agricultural and Biological Chemistry 38, 921-926.

Onodera, R., Nakagawa, Y. and Kandatsu, M. (1977) Ureolytic activity of the washed cell suspension of rumen ciliate protozoa. Agricultural and Biological Chemistry 41, 2177-2182.

Orpin, C.G. (1975) Studies on the rumen flagellate Neocallimastix frontalis. Journal of General Microbiology 91, 249-262.

Orpin, C.G. and Greenwood, Y. (1986) Nutritional and germination requirements of the rumen chytrid-iomycete Neocallimastix frontalis. Transactions of the British Mycological Society 86, 103-109.

Orpin, C.G. and Joblin, K.N. (1997) The rumen anaerobic fungi. In: Hobson, P.N. and Stewart, C.S. (eds) The Rumen Microbial Ecosystem. Blackie Academic and Professional, London, pp. 140-195.

Or-Rashid, M.M., Onodera, R. and Wadud, S. (2001) Biosynthesis of threonine from homoserine by mixed rumen microorganisms: an in vitro study. Current Microbiology 42, 73-77.

Paster, B.J., Russell, J.B., Yang, C.M.J., Woese, C.R. and Tanner, R. (1993) Phytogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii and Clostridium aminophilum sp.nov. International Journal of Systematic Bacteriology 43, 107-110.

Patterson, J.A. (1992) Rumen microbiology. In: Lederberg, J. (ed.) Encyclopedia of Microbiology. Academic Press, London.

Pittman, K.A. and Bryant, M.P. (1964) Peptides and other nitrogen sources for growth of Bacteroides ruminicola. Journal of Bacteriology 88, 401-410.

Pittman, K.A., Lakshmanan, S. and Bryant, M.P. (1967) Oligopeptide uptake by Bacteroides ruminicola. Journal of Bacteriology 93, 1499-1508.

Prins, R.A., Van Gestel, J.C. and Counotte, G.H.M. (1979) Degradation of amino acids and peptides by mixed rumen microorganisms. Zeitschrift für Tierphysiologie, Tierernaehrung und Futtermittelkunde 42, 333-339.

Purser, D.B. and Buechler, S.M. (1966) Amino acid composition of rumen organisms. Journal of Dairy Science 49, 81-84.

Roffler, R.E. and Satter, L.D. (1975) Relationship between ruminal ammonia and nonprotein nitrogen utilization by ruminants. II Application of published evidence to the development of a theoretical model for predicting non-protein nitrogen utilization. Journal of Dairy Science 58, 1889-1998.

Russell, J.B. and Sniffen.C.J. (1984) Effect of carbon-4 and carbon-5 volatile fatty acids on growth of mixed rumen bacteria in vitro. Journal of Dairy Science 67, 987-994.

Russell, J.B. and Strobel, H.J. (1987) Concentration of ammonia across cell membranes of mixed ruminal bacteria. Journal of Dairy Science 70, 970-976.

Russell, J.B., Strobel, H.J. and Chen, G. (1988) Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Applied and Environmental Microbiology 54, 872-877.

Russell, J.B., Onodera, R. and Hino, T. (1991). Ruminal protein fermentation: new perspectives on previous contradictions. In: Tsuda, T., Sasaki, Y. and Kawashima, R. (eds) Physiological Aspacts of Digestion and Metabolism in Ruminants. Academic Press, Tokyo, pp. 681-697.

Russell, J.B., O'Connor, J.D., Fox, D.G., Van Soest, P.J. and Sniff en. C.J. (1992) A net carbohydrate and protein system for evaluating cattle diets - I. Ruminal fermentation. Journal of Animal Science 70, 3551-3561.

Sakurada, M., Morgavi. D.P., Tomita, Y. and Onodera, R. (1994) Ureolytic activity of anaerobic rumen fungi, Piromyces sp. OTS3 and Neocallimastix sp. OTS4. Animal Science and Technology (Japan) 65.950-955.

Salter, D.N., Daneshvar, K. and Smith, R.H. (1979) The origin of nitrogen incorporated into compounds in the rumen bacteria of steers given protein- and urea-containing diets. British Journal of Nutrition 41, 197-209.

Sauer, F.D., Erfle, J.D. and Mahadevan, S. (1975) Amino acid biosynthesis in the mixed rumen cultures. Biochemical Journal 150, 357-372.

Sauvant, D. (1997) Rumen mathematical modelling. In: Hobson, P.N. and Stewart, C.S. (eds) The Rumen Microbial Ecosystem. Blackie Academic and Professional, London, pp. 685-708.

Shimbayashi, K., Obara, Y. and Yonemura, T. (1975) Changes of free amino acids during rumen fermentation and incorporation of urea 15N into microorganisms in vitro. Japanese Journal of Zootechnical Science 46, 243-250.

Siddons, R.C. and Paradine, J. (1981) Effect of diet on protein degrading activity in the sheep rumen. Journal of the Science of Food and Agriculture 32, 973-981.

Spears, J.W. and Hatfield, E.E. (1978) Nickel for ruminants I. Influence of dietary nickel on ruminal urease activity. Journal of Animal Science 47, 1345-1350.

Spears, J.W., Smith, C.J. and Hatfield, E.E. (1977) Rumen bacterial urease requirement for nickel. Journal of Dairy Science 60, 1073-1076.

Stack, R.J., Hungate, R.E. and Opsahl, W.P. (1983) Phenylacetic acid stimulation of cellulose digestion by Ruminococcus albus 8. Applied and Environmental Microbiology 46, 539-544.

Stewart, C.S., Flint, H.J. and Bryant, M.P. (1997) The rumen bacteria. In: Hobson, P.N. and Stewart, C.S. (eds) The Rumen Microbial Ecosystem. Blackie Academic and Professional, London, pp. 10-72.

Takagi, T., Ando, R., Ohgushi, A., Yamashita, T., Dobashi, E., Hussain-Yusuf, H., Onodera, R., Bungo, T., Sato, H. and Fursue, M. (2001) Intracerebroventricular injection of pipecolic acid inhibits food intake and induced sleep-like behaviors in the neonatal chick. Neuroscience Letters 310, 97-100.

Teather, R.M., Hefford, M.A. and Forster, R.J. (1997) Genetics of rumen bacteria. In: Hobson, P.N. and Stewart, C.S. (eds) The Rumen Microbial Ecosystem. Blackie Academic and Professional, London, pp. 427-466.

Umbarger, H.E. (1978) Amino acid biosynthesis and its regulation. Annual Review of Biochemistry 47, 533-606.

Van Gylswyk, N.O. (1990) Enumeration and presumptive identification of some functional groups of bacteria in the rumen of dairy cows fed grass silage-based diets. FEMS Microbiology Ecology 73, 243-254.

Veira, D.M. (1986) The role of ciliate protozoa in nutrition of the ruminant. Journal of Animal Science 63, 1547-1560.

Virtanen, A.I. (1966) Milk production of cows on protein-free feed. Science 153, 1603-1614.

Von Tappeiner, H. (1884) Zeitschrift fur Biologie 20, 52-134.

Wadud, S., Onodera, R. and Or-Rashid, M.M. (2001) Studies on the possibility of histidine biosynthesis from histodinol, imidazolepyruvic acid, imidazoleacetic acid, and imidazolelactic acid by mixed ruminal bacteria, protozoa, and their mixture in vitro. Applied Microbiology and Biotechnology 55, 219-225.

Wallace, R.J. (1979) Effect of ammonia concentration and the composition, hydrolytic activity and nitrogen metabolism of the microbial flora of the rumen. Journal of Applied Bacteriology 47, 443-455.

Wallace, R.J. (1983) Hydrolysis of 14C labelled proteins by rumen microorganisms and by proteolytic enzymes prepared from rumen bacteria. British Journal of Nutrition 50, 345-355.

Wallace, R.J. (1992a) Gel fitration studies of peptide metabolism by rumen microorganisms. Journal of the Science of Food and Agriculture 58, 177-184.

Wallace, R.J. (1992b) Acetylation of peptides inhibits their degradation by rumen microorganisms. British Journal of Nutrition 68, 365-372.

Wallace, R.J. (1994) Amino acid and protein synthesis, turnover and breakdown by ruminal microorganisms. In: Asplund, J.M. (ed.) Principles of Protein Nutrition of Ruminants. CRC Press, Horida.

Wallace, R.J. (1996) Ruminal microbial metabolism of peptides and amino acids. Journal of Nutrition 126, 1326S-1334S.

Wallace, R.J. and Joblin, K.N. (1985) Proteolytic activity of a rumen anaerobic fungus. FEMS Microbiology Letters 29, 19-25.

Wallace, R.J. and McKain, N. (1990) A comparison of methods for determining the concentration of extracellular peptides in rumen fluid of sheep. Journal of Agricultural Science, Cambridge 114, 101-105.

Wallace, R.J. and McKain, N. (1991) A survey of peptidase activity in rumen bacteria. Journal of General Microbiology 137. 2259-2264.

Wallace, R.J. and McKain, N. (1996) Influence of 1,10-phenanthroline and its analogues, other chelators, and transition metal ions on dipeptidase activity of the rumen bacterium, Prevotella ruminicola. Journal of Applied Bacteriology 81, 42-47.

Wallace, R.J., Newbold, C.J. and McKain, N. (1990a) Patterns of peptide metabolism by rumen microorganisms. In: Hoshino, S., Onodera, R., Minato, H. and Itabashi, H. (eds) The Rumen Ecosystem. The Microbial Metabolism and its Control. Japan Scientific Societies Press, Tokyo, pp. 43-50.

Wallace, R.J., McKain, N. and Newbold, C.J. (1990b) Metabolism of small peptides in rumen fluid. Accumulation of intermediates during hydrolysis of alanine oligomers, and comparison of peptidolytic activities of bacteria and protozoa. Journal of the Science of Food and Agriculture 50, 191-199.

Wallace, R.J., Frumholtz, P.P. and Walker, N.D. (1993) Breakdown of N-terminally modified peptides and an isopeptide by rumen microorganisms. Applied and Environmental Microbiology 59, 3147-3149.

Wallace, R.J., Newbold, C.J. and McKain, N. (1996) Inhibition by 1,10-phenanthroline of the breakdown of peptides by rumen bacteria and protozoa. Journal of Applied Bacteriology 80, 425-430.

Wallace, R.J. Onodera, R. and Cotta, M.A. (1997) Metabolism of nitrogen containing compounds. In: Hobson, P.N. and Stewart, C.S. (eds) The Rumen Microbial Ecosystem. Blackie Academic and Professional, London, pp. 283-328.

Wallace, R.J., Min, W.K., Witt, M.W., Grant, G„ MacRae, J.C., Maeng, W.J., Newbold, C.J. and Rode, L.M. (1998) Uptake of acetylated peptides from the small intestine in sheep and their nutritive value in rats. British Journal of Nutrition 80, 101-108.

Webb, E.C. (1992) Enzyme Nomenclature 1992. Academic Press, London.

Wen, Z. and Morrison, M. (1996) The NAD(P)H-dependent glutamate dehydrogenase activities of Prevotella ruminicola B:4 can be attributed to one enzyme (GdhA), and gdhA expression is regulated in response to the nitrogen source available for growth. Applied and Environmental Microbiology 62, 3826—3833.

Wen, Z. and Morrison, M. (1997) Glutamate dehydrogenase activity profiles for type strains of ruminal Prevotella spp. Applied and Environmental Microbiology 63, 3314-331.

Westlake, K. and Mackie, R.I. (1990) Peptide and amino acid transport in Streptococcus bovis. Applied Microbiology and Biotechnology 34, 97-102.

Whetstone, H.D., Davis, C.L. and Bryant, M.P. (1981) Effect of monensin on breakdown of protein by rumen microorganisms in vitro. Journal of Animal Science 53, 803-809.

Williams, A.G. (1979) The selectivity of carbohydrate assimilation in the anaerobic rumen ciliate Dasytricha ruminantium. Journal of Applied Bacteriology 47, 511-520.

Williams, A.G. and Coleman, G.S. (1992) The Rumen Protozoa. Springer-Verlag. New York.

Williams, A.G. and Harfoot, C.G. (1976) Factors affecting the uptake and metabolism of soluble carbohydrates by the rumen ciliate Dasytricha ruminantium isolated from ovine rumen contents by filtration. Journal of General Microbiology 96, 125-136.

Witt, M.W., Newbold, C.J. and Wallace, R.J. (1998) Influence of dietary acetylated peptides on fermentation and peptidase activities in the sheep rumen. Journal of Applied Microbiology 84, 847-851.

Wright, D.E. (1967) Metabolism of peptides by rumen microorganisms. Applied Microbiology 15, 148-151.

Wright, D.E. and Hungate. R.E. (1967) Amino acid concentrations in rumen fluid. Applied Microbiology 15, 148-151.

Yang, C.M.J, and Russell, J.B. (1992) Resistance of proline-containing peptides to ruminal degradation in vitro. Applied and Environmental Microbiology 58, 3954-3958.

Yang, C.M.J, and Russell, J.B. (1993) Effect of monensin on the specific activiy of ammonia production by ruminal bacteria and disappearance of amino nitrogen from the rumen. Applied and Environmental Microbiology 59, 3250-3254.

Yokoyama, M.T., Carlson, J.R. and Holdeman, L.V. (1977) Isolation and characteristics of a skatole-pro-ducing Lactobacillus sp. from the bovine rumen. Applied and Environmental Microbiology 34, 837-842.

Zhu, W.Y., Kingston-Smith, A.H., Troncoso, D., Merry, R.J., Dawes, D.R., Pichard, G., Thomas, H. and Theodorou, M.K. (1999) Evidence of a role for plant proteases in the degradation of herbage proteins in the rumen of grazing cattle. Journal of Dairy Science 82, 2651-2658.

Was this article helpful?

0 0
The Mediterranean Diet Meltdown

The Mediterranean Diet Meltdown

Looking To Lose Weight But Not Starve Yourself? Revealed! The Secret To Long Life And Good Health Is In The Foods We Eat. Download today To Discover The Reason Why The Mediterranean Diet Will Help You Have Great Health, Enjoy Life And Live Longer.

Get My Free Ebook


Post a comment